Considering the Ionic Strength and pH of Process Water on Bubble-Particle Attachment of Sulfide Minerals: Implications for Froth Flotation in Saline Water

Lisa October

K. Corin, M. Manono, N. Schreithofer, J. Wiese

> IMWA 2019 Perm, Russia 15-19 July 2019

Doredooy up the series of Cope John . IVUNIVESING

Background

Wills and Finch (2015)

- Creating the hydrophobic mineral surface
- The formation of bubbles with a fixed size and distribution
- The collision between the mineral and bubble and potential attachment
- Transport of the bubble-particle aggregate through the pulp phase
- Transfer of the bubble-particle aggregate to the froth phase
- Collection of the bubble-particle aggregate from the froth phase

Background

Bubble-Particle Attachment

CENTRE FOR MINERALS RESEARCH

Factors Affecting B-P Attachment

Fundamental Bubble-Particle Attachment

Measuring this Parameter

History of Attachment Timers

A New Attachment Timer

Effect of Electrolytes on B-P Attachment

KCI-Quartz

Effect of IS and pH

But How Does an Increase in both Ionic Strength and pH of Process Water Affect the Fundamental Bubble-Particle Attachment Process?

Experimental Programme

Attachment Probability: Galena

Fundamental B-P Attachment Vs Classical Microflotation

Fundamental B-P Attachment Vs Classical Microflotation

Nyabeze and McFadzean, 2016

Microflotation: Galena

Attachment Probability: Chalcopyrite

Microflotation: Chalcopyrite

Zeta Potential

Value of this Work

CENTRE FOR MINERALS RESEARCH

Acknowledgements

science & technology

Department: Science and Technology REPUBLIC OF SOUTH AFRICA

Aalto University School of Chemical Technology

Measuring Attachment Probability

Before Attachment

After Attachment

